Influence-Driven Model for Time Series Prediction from Partial Observations
نویسندگان
چکیده
Applications in sustainability domains such as in energy, transportation, and natural resource and environment monitoring, increasingly use sensors for collecting data and sending it back to centrally located processing nodes. While data can usually be collected by the sensors at a very high speed, in many cases, it can not be sent back to central nodes at a frequency that is required for fast and real-time modeling and decisionmaking. This may be due to physical limitations of the transmission networks, or due to consumers limiting frequent transmission of data from sensors located at their premises for security and privacy concerns. We propose a novel solution to the problem of making short term predictions in absence of real-time data from sensors. A key implication of our work is that by using real-time data from only a small subset of influential sensors, we are able to make predictions for all sensors. We evaluated our approach with a large real-world electricity consumption data collected from smart meters in Los Angeles and the results show that between prediction horizons of 2 to 8 hours, despite lack of real time data, our influence model outperforms the baseline model that uses real-time data. Also, when using partial real-time data from only ≈ 7% influential smart meters, we witness prediction error increase by only ≈ 0.5% over the baseline, thus demonstrating the usefulness of our method for practical scenarios.
منابع مشابه
Tidal prediction using time series analysis of Buoy observations
Although tidal observations which are extracted from coastal tide gages, have higher accuracy due to their higher sampling rate, installing these types of gages can impose some spatial limitation since we cannot use every part of sea to install them. To solve this limitation, we can employ satellite altimetry observations. However, satellite altimetry observations have lower sampling rate. Acco...
متن کاملEvaluation of SARIMA time series models in monthly streamflow estimation in Idanak hydrometry station
prediction of hydrological variables is a highly effective tool in water resource management. One of the important tools for modeling hydrological processes is the use of time series modeling and analysis. River series production series can be used by time series models in various studies such as drought, flood, reservoir systems design and many other purposes For this purpose, monthly flow dat...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملPrediction of Net Primary Production Changes in Different Phytogeographical Regions of Iran from 2000 to 2016, Using Time Series Models
Vegetation cover is an important component of terrestrial ecosystems that changes seasonally. Accurate parameterization of vegetation cover dynamics through developing indicators of periodic patterns can assist our understanding of vegetation-climate interactions. The current study was conducted to investigate and model vegetation changes in some phytogeographical regions of Iran including, Kha...
متن کاملRisk prediction based on a time series case study: Tazareh coal mine
In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015